

Spectroscopic Technique

Mr. Swapnilkumar Subhashrao Kale Assistant Professor Department of Chemistry Shri Shivaji Science and Arts College, Chikhli Dist.-Buldana E-mail: kaleswapnilkumar02@gmail.com

Frequency (ν) in Hz

From Here.....

Y

Lets start the study of NMR spectroscop

Presenter Tedia

The Nuclear Magnetic Moment

- ➢ Nuclear spin quantum number, I.
- 'I' can be ≥ 0 and any multiple of $\frac{1}{2}$.
- NMR silent or NMR inactive nuclei
- ➢ NMR active Nuclei:

Element	${}^{1}\mathbf{H}_{1}$	${}^{2}\mathbf{H}_{1}$	${}^{12}C_{6}$	${}^{13}C_{6}$	$^{14}\mathbf{N_{7}}$	¹⁶ O ₈	¹⁷ O ₈	$^{19}\mathrm{F}_{9}$	${}^{31}{ m P}_1$
Nucleur spin quantum number	1/2	1	0	$\frac{1}{2}$	1	0	5/2	1/2	1/2
No of spin states	2	3	0	2	3	0	6	2	2

NMR Concepts – Spin States

- Nucleus produces magnetic field.
- > NMR active nuclei as tiny bar magnet
- Random orientation and spin aligned or spin opposed.
- Iower energy spin state: spin aligned situation: highly populated one.
- Higher spin energy state: spin opposed situation: less populated one.

Strength of External magnetic field:

Energy required for nuclear transition \propto strength of external applied magnetic field

Nature of the nucleus:

Frequency required to nuclear transition \propto magnetogyric ratio of the nucleus

$$\vartheta = \frac{\gamma H_0}{2\pi}$$

Dependence of the difference in energy between lower and higher nuclear spin levels of the hydrogen atom.

 Nuclear Magnetic resonance: At some values of magnetic field strength, the energy required to excite a proton matches the energy of incident radiation is called resonance, an absorption of energy occurs and a NMR spectrum is obtained.
 Effective field strength

Information from proton-NMR Spectrum

1. The number of signals: how many different types of proton present in given organic molecules

No. of signal in the spectrum = the number of kinds of proton

NTENSITY

2. Position of Signals: tells us about the electronic environment of each type of proton

Chemical Shift

- Tells us about the kinds of protons
- Tells about the electronic environment which determine spectrum where a proton absorbs.
- ➢ Unit: ppm
- Shielded and deshielded proton
- Chemical Shift
- > TMS: standard for NMR spectrum

The chemical shift simply increases as the electronegativity of attached element on the carbon to which protons of interest are present given in Table A

Multiple substituents have a stronger effect that a single substituents given in Table B

Dependence of the chemical shift of alkyl halide (Table A)

Compound CH ₃ X	$\mathrm{CH}_3\mathrm{F}$	CH ₃ OH	CH ₃ Cl	CH_3Br	$\mathrm{CH}_{3}\mathrm{I}$	CH_4	$(CH_3)_4$ Si
Element X	\mathbf{F}	0	Cl	Br	Ι	Η	Si
Electronegativity of X	4.0	3.5	3.1	2.8	2.5	2.1	1.8
Chemical shift δ	4.26	3.40	3.05	2.68	2.16	0.23	0

- **Magnetic anisotropy** of neighboring bonds and ring currents – π electrons of triple bonds and aromatic rings are forced to rotate about the bond axis creating a magnetic field which counteracts the static field.

Substitution Effect

$R-C\underline{H}_3$	$\underline{R}_{\underline{2}}CH_2$	$\underline{R}_{\underline{3}}CH$
0.7-1.1 ppm	1.2-1.4 ppm	1.4-1.7 ppm

3. The intensities of signals \propto total number of protons giving rise to the signal.

Splitting of Signals: Spin-Spin Coupling

- Multiplicity and spin-spin coupling
- Gives an idea about adjacent environment of proton
- Spin-spin coupling for one adjacent non-equivalent proton
- Spin-spin coupling for two adjacent non-equivalent proton
- Spin-spin coupling for three adjacent non-equivalent proton
- > Multiplets
- \succ n+1 rule
- \succ (*n_a* + 1)(*n_c* + 1) rule

IR Spectroscopy

Mass Spectroscopy

- Principle: Bombardment of sample with electron and detection of molecular fragment
- Provide information about molecular mass and atom connectivity

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

- Principle: Promotion of electron to higher energy level through irradiation of matter with UV light
- Provides information of about the presence of conjugated system and the presence of double and triple bond

X-ray Spectroscopy

Principle: Bombardment of sample with X-ray radiation
Provide information about bond angles and bond length

